Estimating the number of protein folds.

نویسندگان

  • C Zhang
  • C DeLisi
چکیده

A number of fundamental questions in structural biology concern the diversity of protein architectures (or folds). Here, we address two of them, the size of the universe of folds, and the distribution of sequence families among them, using an analysis based on a new and rigorous statistical sampling method. In particular we show that the number of known non-transmembrane protein folds is approximately one half of the total that exist, and that certain superfolds should exist, which accommodate dozens of non-homologous sequence families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the total number of protein folds.

Many seemingly unrelated protein families share common folds. Theoretical models based on structure designability have suggested that a few folds should be very common while many others have low probability. In agreement with the predictions of these models, we show that the distribution of observed protein families over different folds can be modeled with a highly-stretched exponential. Our re...

متن کامل

A unifold, mesofold, and superfold model of protein fold use.

As more and more protein structures are determined, there is increasing interest in the question of how many different folds have been used in biology. The history of the rate of discovery of new folds and the distribution of sequence families among known folds provide a means of estimating the underlying distribution of fold use. Previous models exploiting these data have led to rather differe...

متن کامل

Estimating the number of protein folds and families from complete genome data.

Using the data on proteins encoded in complete genomes, combined with a rigorous theory of the sampling process, we estimate the total number of protein folds and families, as well as the number of folds and families in each genome. The total number of folds in globular, water- soluble proteins is estimated at about 1000, with structural information currently available for about one-third of th...

متن کامل

Co-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin

Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...

متن کامل

Co-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin

Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 1998